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Abstract 
Summary: Knowledge graph embeddings (KGEs) have received significant attention in other                     
domains due to their ability to predict links and create dense representations for graphs' nodes and                               
edges. However, the software ecosystem for their application to bioinformatics remains limited and                         
inaccessible for users without expertise in programming and machine learning. Therefore, we                       
developed BioKEEN (Biological KnowlEdge EmbeddiNgs) and PyKEEN (Python KnowlEdge                 
EmbeddiNgs) to facilitate their easy use through an interactive command line interface. Finally, we                           
present a case study in which we used a novel biological pathway mapping resource to predict links                                 
that represent pathway crosstalks and hierarchies. 
Availability: B​io​KEEN and PyKEEN are open source Python packages publicly available under the                         
MIT License at ​https://github.com/SmartDataAnalytics/BioKEEN and         
https://github.com/SmartDataAnalytics/PyKEEN 
Contact: ​mehdi.ali@cs.uni-bonn.de 
Supplementary information:​ ​Supplementary data ​are available at ​Bioinformatics​ online. 

 
1 Introduction 
Knowledge graphs (KGs) are multi-relational, directed graphs in        
which nodes represent entities and edges represent their relations         
(Bordes ​et al. ​2013). While they have been successfully applied for           
question answering, information extraction, and named entity       
disambiguation outside of the biomedical domain, their usage in         
biomedical applications remains limited (Su ​et al.​, 2018). 

Because KGs are inherently incomplete and noisy, several methods         
have been developed for deriving or predicting missing edges (Nickel          
et al., 2016). One method is to apply reasoning based on formal logic             
to derive missing edges, but it usually requires a large set of            
user-defined formulas to achieve generalization. Another method is to         
train knowledge graph embeddings (KGEs; low-dimensional      
vector/matrix representations of entities and relations whose elements        
correspond to latent features of the KG) that best preserve the           
structural characteristics of the KG and then predict new edges using           
their respective KGE models (Wang ​et al.,​ 2017). 

In a biological setting, relation prediction not only enables          
researchers to expand their KGs, but also to generate new hypotheses           
that can be tested experimentally. 

Here, we present BioKEEN (Biological KnowlEdge EmbeddiNgs):       
a Python package for training and evaluating KGEs on biological          
KGs that is accessible and facile for bioinformaticians without expert          
knowledge in machine learning through an interactive command line         

interface (CLI). Through the integration of the Bio2BEL software         
(​https://github.com/bio2bel​) within BioKEEN, numerous biomedical     
databases containing structured knowledge are directly accessible.       
Additionally, we have externalized BioKEEN's core machine learning        
components for training and evaluating KGE models in an         
independent Python package, PyKEEN, such that they can be reused          
in other domains (see ​Figure 1​). 

While there exists other toolkits like OpenKE (Han ​et al.​, 2018)           
and scikit-kge (​https://github.com/mnick/scikit-kge​), they are not      
specialised for bioinformatics applications and require more expertise        
in programming and in KGEs. To the best of our knowledge,           
BioKEEN is the first framework specifically designed to facilitate the          
use of KGE models for users in the bioinformatics community. 
2 Software Architecture 
The BioKEEN software package consists of three layers: 1) the model           
configuration layer, 2) the data acquisition and transformation layer,         
and 3) the learning layer (see ​Figure 1​). 

https://github.com/SmartDataAnalytics/BioKEEN
https://github.com/SmartDataAnalytics/PyKEEN
https://github.com/bio2bel
https://github.com/mnick/scikit-kge


 
Figure 1​. Software architecture of BioKEEN 1) ​Configuration: Users define experiments           
through the CLI. 2) ​Data Acquisition: Dataset(s) are (down-)loaded and transformed into a             
tensor. ​3) Learning: The KGE model is trained with user-defined hyper-parameters or a             
hyper-parameter search is applied to find the best set of hyper-parameter values. The             
functionality of this layer is externalized in the PyKEEN package. 
2.1 Configuration Layer 
Because every KGE model has its own set of hyper-parameters, the           
configuration of an experiment for a non-expert can be very          
complicated and discouraging. This possible obstacle is addressed in         
the configuration layer through an interactive CLI that assists users in           
setting up their experiments (i.e., defining the datasets, the model, and           
its parameters). Based on the configuration, BioKEEN builds a         
machine learning pipeline containing the appropriate components       
(e.g., data acquisition, training, evaluation, prediction). 

Currently, we provide implementations of 10 embedding models         
(e.g., TransE, TransH, ConvE, etc. (Wang ​et al., 2017; ​Dettmers ​et           
al., 2017)). A full list can be found in ​Supplementary Table S1​.            
Moreover, BioKEEN can be executed in training and hyper-parameter         
optimization (HPO) mode. 
2.2 Data Acquisition Layer 
Because extracting and preparing training data can be a         
time-consuming process, BioKEEN integrates the Bio2BEL software       
to download and parse numerous biomedical databases       
(​Supplementary Table S2​). This allows users to focus on the          
experiments, to automatically incorporate the latest database versions,        
and to have access to new datasets as they are incorporated into            
Bio2BEL. In addition, users can provide their own datasets as          
tab-separated values, RDF, or from NDEx (Pratt ​et al.​, 2015).          
BioKEEN processes the selected and provided datasets then        
transforms them into a tensor (i.e., a multi-dimensional matrix) for          
further processing. 
2.3 Learning Layer 
Determining the appropriate values for the hyper-parameters of a         
KGE model requires both machine learning and domain specific         
knowledge. If the user specifies hyper-parameters, BioKEEN can be         
run directly in ​training mode​. Otherwise, it first runs in          
hyper-parameter optimization (HPO) mode, where ​random search is        
applied to find suitable hyper-parameters values from (user)        
predefined sets. We implemented ​random search instead of the         
widely applied ​grid search because it converges faster to appropriate          
hyper-parameter values (Goodfellow ​et al. 2016). Finally, the user         
can run BioKEEN in ​training mode with the resulting         
hyper-parameter values. 

To train the models, negative training examples are generated         
based on the algorithm described in Bordes ​et al.. To evaluate the            
trained models, BioKEEN computes two common evaluation metrics        
for KGE models: mean rank and hits@k. 

3 Application 
We used BioKEEN to train and evaluate several KGE models on the            
pathway mappings from ComPath (Domingo-Fernández et al.​, 2018),        
the first manually curated intra- and inter-database pathway mapping         
resource that bridges the representations of similar biological        
pathways in different databases. Then, we used the best model to           
predict new relations representing pathway crosstalks and hierarchies.        
After removing reflexive triplets, we found that the highest ranked          
novel equivalence between TGF-beta Receptor Signaling      
(wikipathways:WP560) and TGF-beta signaling pathway     
(kegg:hsa04350), as well as the highest ranked hierarchical link that          

Lipoic acid (kegg:hsa00785) is a part of Lipid metabolism         
(reactome:R-HSA-556833) both represented novel pathway     
crosstalks. Upon manual evaluation, each fulfilled the ComPath        
curation criteria and can be added to the resource. 

We performed HPO for five different models to illustrate the need           
for choosing the appropriate hyper-parameter values. For the TransE         
model, comparing the hyper-parameters similar to those reported by         
Bordes ​et al. with the hyper-parameters from HPO showed an          
improvement in the hits@10 metric from 19.10% to 63.20%. 

Moreover, the nature of the model strongly influences the results.          
We found that the simpler models (e.g., TransE, UM, and DistMult)           
performed similar or even better than the more complex ones (e.g.,           
TransH and TransR). This might be explained by the fact that the            
more expressive models overfit since ComPath is a not a large data            
set. Ultimately, this case scenario illustrates the ability of BioKEEN          
to assist users in finding reasonable combinations of models and their           
hyper-parameter values to predict novel links. 
4 Discussion and Future Work 
While BioKEEN already includes several models and components to         
build machine learning pipelines, it has limitations that could benefit          
from several additions and improvements.  

Modeling multiscale biology (i.e., the ​-omics​, pathway, phenotype,        
and population levels) results in KGs with a variety of compositions,           
structural features, and topologies for which different KGE models         
that have not yet been included in BioKEEN may be more           
appropriate. Further, because of the heterogeneity and lack of         
structure in most biological and clinical data, we plan to implement           
additional KGE models that incorporate text, logical rules, and         
images in addition to the triples in KGs (Wang ​et al., 2017; Hamilton             
et al. ​2018). 

The negative sampling approach described by Bordes ​et al.         
included in BioKEEN is prone to false negatives. We plan to mitigate            
them by incorporating prior biological knowledge and constraints to         
generate triples guaranteed to be true negatives such as: i.) type           
constraints for predicates (e.g. the relation ​transcribed is only valid          
from gene to protein), ii.) valid attribute range for predicates (e.g.,           
protein weight is below 1000 kDa) and iii.) functional constraints          
such as mutual exclusion (e.g., a protein is coded by one gene)            
(Nickel ​et al.,​ 2016). 

While BioKEEN assists in HPO, it does not provide assistance in           
selecting a particular KGE model, which is an obscure process even           
for machine learning experts. We plan to address this by          
implementing KG analyses with rule-based suggestions (e.g.,       
DistMult performs poorly for KGs with antisymmetric relations). 

Finally, we plan to present this software as a web application to            
enable a wider audience of researchers who many not be comfortable           
with scripting or CLIs to train and evaluate KGE models. 
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