
Bioinformatics, YYYY, 0–0
doi: 10.1093/bioinformatics/xxxxx

Advance Access Publication Date: DD Month YYYY
Applications Note

Data and Text Mining
BioKEEN: A library for learning and evaluating
biological knowledge graph embeddings

Mehdi Ali1,*, Charles Tapley Hoyt1,2, Daniel Domingo-Fernández1,2, Jens
Lehmann1,3, Hajira Jabeen1

(1) Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn 53113, Germany, (2) Department of
Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Sankt Augustin
53754, Germany (3) Department of Enterprise Information Systems, Fraunhofer Institute for Intelligent
Analysis and Information Systems (IAIS), Sankt Augustin 53754, Germany
*To whom correspondence should be addressed.
Associate Editor: XXXXXXX
Received on XXXXX; revised on XXXXX; accepted on XXXXX
Abstract
Summary: Knowledge graph embeddings (KGEs) have received significant attention in other
domains due to their ability to predict links and create dense representations for graphs' nodes and
edges. However, the software ecosystem for their application to bioinformatics remains limited and
inaccessible for users without expertise in programming and machine learning. Therefore, we
developed BioKEEN (Biological KnowlEdge EmbeddiNgs) and PyKEEN (Python KnowlEdge
EmbeddiNgs) to facilitate their easy use through an interactive command line interface. Finally, we
present a case study in which we used a novel biological pathway mapping resource to predict links
that represent pathway crosstalks and hierarchies.
Availability: BioKEEN and PyKEEN are open source Python packages publicly available under the
MIT License at https://github.com/SmartDataAnalytics/BioKEEN and
https://github.com/SmartDataAnalytics/PyKEEN
Contact: mehdi.ali@cs.uni-bonn.de
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
Knowledge graphs (KGs) are multi-relational, directed graphs in
which nodes represent entities and edges represent their relations
(Bordes et al. 2013). While they have been successfully applied for
question answering, information extraction, and named entity
disambiguation outside of the biomedical domain, their usage in
biomedical applications remains limited (Su et al., 2018).

Because KGs are inherently incomplete and noisy, several methods
have been developed for deriving or predicting missing edges (Nickel
et al., 2016). One method is to apply reasoning based on formal logic
to derive missing edges, but it usually requires a large set of
user-defined formulas to achieve generalization. Another method is to
train knowledge graph embeddings (KGEs; low-dimensional
vector/matrix representations of entities and relations whose elements
correspond to latent features of the KG) that best preserve the
structural characteristics of the KG and then predict new edges using
their respective KGE models (Wang et al., 2017).

In a biological setting, relation prediction not only enables
researchers to expand their KGs, but also to generate new hypotheses
that can be tested experimentally.

Here, we present BioKEEN (Biological KnowlEdge EmbeddiNgs):
a Python package for training and evaluating KGEs on biological
KGs that is accessible and facile for bioinformaticians without expert
knowledge in machine learning through an interactive command line

interface (CLI). Through the integration of the Bio2BEL software
(https://github.com/bio2bel) within BioKEEN, numerous biomedical
databases containing structured knowledge are directly accessible.
Additionally, we have externalized BioKEEN's core machine learning
components for training and evaluating KGE models in an
independent Python package, PyKEEN, such that they can be reused
in other domains (see Figure 1).

While there exists other toolkits like OpenKE (Han et al., 2018)
and scikit-kge (https://github.com/mnick/scikit-kge), they are not
specialised for bioinformatics applications and require more expertise
in programming and in KGEs. To the best of our knowledge,
BioKEEN is the first framework specifically designed to facilitate the
use of KGE models for users in the bioinformatics community.
2 Software Architecture
The BioKEEN software package consists of three layers: 1) the model
configuration layer, 2) the data acquisition and transformation layer,
and 3) the learning layer (see Figure 1).

https://github.com/SmartDataAnalytics/BioKEEN
https://github.com/SmartDataAnalytics/PyKEEN
https://github.com/bio2bel
https://github.com/mnick/scikit-kge

Figure 1. Software architecture of BioKEEN 1) Configuration: Users define experiments
through the CLI. 2) Data Acquisition: Dataset(s) are (down-)loaded and transformed into a
tensor. 3) Learning: The KGE model is trained with user-defined hyper-parameters or a
hyper-parameter search is applied to find the best set of hyper-parameter values. The
functionality of this layer is externalized in the PyKEEN package.
2.1 Configuration Layer
Because every KGE model has its own set of hyper-parameters, the
configuration of an experiment for a non-expert can be very
complicated and discouraging. This possible obstacle is addressed in
the configuration layer through an interactive CLI that assists users in
setting up their experiments (i.e., defining the datasets, the model, and
its parameters). Based on the configuration, BioKEEN builds a
machine learning pipeline containing the appropriate components
(e.g., data acquisition, training, evaluation, prediction).

Currently, we provide implementations of 10 embedding models
(e.g., TransE, TransH, ConvE, etc. (Wang et al., 2017; Dettmers et
al., 2017)). A full list can be found in Supplementary Table S1.
Moreover, BioKEEN can be executed in training and hyper-parameter
optimization (HPO) mode.
2.2 Data Acquisition Layer
Because extracting and preparing training data can be a
time-consuming process, BioKEEN integrates the Bio2BEL software
to download and parse numerous biomedical databases
(Supplementary Table S2). This allows users to focus on the
experiments, to automatically incorporate the latest database versions,
and to have access to new datasets as they are incorporated into
Bio2BEL. In addition, users can provide their own datasets as
tab-separated values, RDF, or from NDEx (Pratt et al., 2015).
BioKEEN processes the selected and provided datasets then
transforms them into a tensor (i.e., a multi-dimensional matrix) for
further processing.
2.3 Learning Layer
Determining the appropriate values for the hyper-parameters of a
KGE model requires both machine learning and domain specific
knowledge. If the user specifies hyper-parameters, BioKEEN can be
run directly in training mode. Otherwise, it first runs in
hyper-parameter optimization (HPO) mode, where random search is
applied to find suitable hyper-parameters values from (user)
predefined sets. We implemented random search instead of the
widely applied grid search because it converges faster to appropriate
hyper-parameter values (Goodfellow et al. 2016). Finally, the user
can run BioKEEN in training mode with the resulting
hyper-parameter values.

To train the models, negative training examples are generated
based on the algorithm described in Bordes et al.. To evaluate the
trained models, BioKEEN computes two common evaluation metrics
for KGE models: mean rank and hits@k.

3 Application
We used BioKEEN to train and evaluate several KGE models on the
pathway mappings from ComPath (Domingo-Fernández et al., 2018),
the first manually curated intra- and inter-database pathway mapping
resource that bridges the representations of similar biological
pathways in different databases. Then, we used the best model to
predict new relations representing pathway crosstalks and hierarchies.
After removing reflexive triplets, we found that the highest ranked
novel equivalence between TGF-beta Receptor Signaling
(wikipathways:WP560) and TGF-beta signaling pathway
(kegg:hsa04350), as well as the highest ranked hierarchical link that

Lipoic acid (kegg:hsa00785) is a part of Lipid metabolism
(reactome:R-HSA-556833) both represented novel pathway
crosstalks. Upon manual evaluation, each fulfilled the ComPath
curation criteria and can be added to the resource.

We performed HPO for five different models to illustrate the need
for choosing the appropriate hyper-parameter values. For the TransE
model, comparing the hyper-parameters similar to those reported by
Bordes et al. with the hyper-parameters from HPO showed an
improvement in the hits@10 metric from 19.10% to 63.20%.

Moreover, the nature of the model strongly influences the results.
We found that the simpler models (e.g., TransE, UM, and DistMult)
performed similar or even better than the more complex ones (e.g.,
TransH and TransR). This might be explained by the fact that the
more expressive models overfit since ComPath is a not a large data
set. Ultimately, this case scenario illustrates the ability of BioKEEN
to assist users in finding reasonable combinations of models and their
hyper-parameter values to predict novel links.
4 Discussion and Future Work
While BioKEEN already includes several models and components to
build machine learning pipelines, it has limitations that could benefit
from several additions and improvements.

Modeling multiscale biology (i.e., the -omics, pathway, phenotype,
and population levels) results in KGs with a variety of compositions,
structural features, and topologies for which different KGE models
that have not yet been included in BioKEEN may be more
appropriate. Further, because of the heterogeneity and lack of
structure in most biological and clinical data, we plan to implement
additional KGE models that incorporate text, logical rules, and
images in addition to the triples in KGs (Wang et al., 2017; Hamilton
et al. 2018).

The negative sampling approach described by Bordes et al.
included in BioKEEN is prone to false negatives. We plan to mitigate
them by incorporating prior biological knowledge and constraints to
generate triples guaranteed to be true negatives such as: i.) type
constraints for predicates (e.g. the relation transcribed is only valid
from gene to protein), ii.) valid attribute range for predicates (e.g.,
protein weight is below 1000 kDa) and iii.) functional constraints
such as mutual exclusion (e.g., a protein is coded by one gene)
(Nickel et al., 2016).

While BioKEEN assists in HPO, it does not provide assistance in
selecting a particular KGE model, which is an obscure process even
for machine learning experts. We plan to address this by
implementing KG analyses with rule-based suggestions (e.g.,
DistMult performs poorly for KGs with antisymmetric relations).

Finally, we plan to present this software as a web application to
enable a wider audience of researchers who many not be comfortable
with scripting or CLIs to train and evaluate KGE models.

Acknowledgements
We thank our partners from the Bio2Vec, MLwin, and SimpleML
projects for their assistance.

Funding
This research was supported by Bio2Vec project (http://bio2vec.net/,
CRG6 grant 3454) with funding from King Abdullah University of
Science and Technology (KAUST).

Conflict of Interest: none declared.

References
Bordes, A., et al. (2013). Translating embeddings for modeling

multi-relational data. NIPS.
Dettmers, T., et al. (2017) Convolutional 2d knowledge graph

embeddings. arXiv preprint arXiv:1707.01476.

http://bio2vec.net/

Domingo-Fernández, et al. (2018). ComPath: An ecosystem for
exploring, analyzing, and curating pathway databases. npj Syst Biol
Appl. 5(1):3.

Goodfellow, I., et al. (2016). Deep learning. Vol. 1. MIT press.
Hamilton W., et al. (2018). Embedding Logical Queries on

Knowledge Graphs. arXiv preprint arXiv:1806.01445
Han, X., et al. (2018). OpenKE: An Open Toolkit for Knowledge

Embedding. Proceedings of EMNLP.
Nickel, M., et al. (2016). A review of relational machine learning for

knowledge graphs. Proceedings of the IEEE 104.1 (2016): 11-33.
Pratt, D., et al. (2015). NDEx, the Network Data Exchange. Cell

Systems, 1(4), 302–305.
Su, C., et al. (2018). Network embedding in biomedical data science.

Briefings in Bioinformatics, bby117.
Wang, Q., et al. (2017). Knowledge graph embedding: A survey of

approaches and applications. IEEE Transactions on Knowledge
and Data Engineering 29.12: 2724-2743.

